Learning Structured Classifiers with Dual Coordinate Descent

نویسندگان

  • André F. T. Martins
  • Kevin Gimpel
  • Noah A. Smith
  • Eric P. Xing
  • Pedro M. Q. Aguiar
  • Mário A. T. Figueiredo
چکیده

We present a unified framework for online learning of structured classifiers. This framework handles a wide family of convex loss functions that includes as particular cases CRFs, structured SVMs, and the structured perceptron. We introduce a new aggressive online algorithm that optimizes any loss in this family; for the structured hinge loss, this algorithm reduces to 1-best MIRA; in general, it can be regarded as a dual coordinate ascent algorithm. No learning rate parameter is required. Our experiments show that the technique is faster to converge to an accurate model than stochastic gradient descent, on two NLP problems, at least when inference is exact.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Structured Classifiers with Dual Coordinate Ascent

We present a unified framework for online learning of structured classifiers that handles a wide family of convex loss functions, properly including CRFs, structured SVMs, and the structured perceptron. We introduce a new aggressive online algorithm that optimizes any loss in this family. For the structured hinge loss, this algorithm reduces to 1-best MIRA; in general, it can be regarded as a d...

متن کامل

Aggressive Online Learning of Structured Classifiers

We present a unified framework for online learning of structured classifiers that handles a wide family of convex loss functions, properly including CRFs, structured SVMs, and the structured perceptron. We introduce a new aggressive online algorithm that optimizes any loss in this family. For the structured hinge loss, this algorithm reduces to 1-best MIRA; in general, it can be regarded as a d...

متن کامل

Structural Learning with Amortized Inference

Training a structured prediction model involves performing several loss-augmented inference steps. Over the lifetime of the training, many of these inference problems, although different, share the same solution. We propose AI-DCD, an Amortized Inference framework for Dual Coordinate Descent method, an approximate learning algorithm, that accelerates the training process by exploiting this redu...

متن کامل

Dual Coordinate Descent Algorithms for Efficient Large Margin Structured Prediction

Due to the nature of complex NLP problems, structured prediction algorithms have been important modeling tools for a wide range of tasks. While there exists evidence showing that linear Structural Support Vector Machine (SSVM) algorithm performs better than structured Perceptron, the SSVM algorithm is still less frequently chosen in the NLP community because of its relatively slow training spee...

متن کامل

Learning Efficiently with Approximate Inference via Dual Losses

Many structured prediction tasks involve complex models where inference is computationally intractable, but where it can be well approximated using a linear programming relaxation. Previous approaches for learning for structured prediction (e.g., cuttingplane, subgradient methods, perceptron) repeatedly make predictions for some of the data points. These approaches are computationally demanding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010